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(Received 3 September 1982) 

Many mathematical methods have been postulated in the literature [l] for 
the determination of the kinetics and mechanism of a solid state reaction 
from thermoanalytical curves obtained either isothermally or non-isotherm- 
ally. 

These methods are based on the use of the basic rate equation 

2 = Kf( a) = Z eCEIRTf( cx) (Isothermal) 

or, changing the variables from time to temperature 

(1) 

g = $ f(a) = ’ ‘yRr f( a) (Non-isothermal) (4 

By using any of these equations, either in the differential form, as given, 
or in the integral form 

g(a) = Kt = Z eCEiRTt (3) 
or 

g(,+F[ 1 _F] e-WRT 

for isothermal and non-isothermal procedures, respectively, and plotting the 
logarithmic version of either of these equations, the kinetic parameters are 
generally evaluated. 

The values of E, Z and K, thus obtained, become the kinetic parameters 
and the functional form of (Y, i.e. f(a) or its integral form g(a), become the 
mechanism determining function for a reaction under investigation. Often 
the logarithmic version of the differential or integral form of the equation for 
any functional form f( C-X) or g(a), when plotted against the reciprocal of 
temperature, l/T, becomes more or less linear and it becomes very difficult 
to decide the validity of a particular mechanism for a reaction under 
investigation and also the real kinetic parameters. 

In view of this, quite a few procedures have been suggested in the 

0040-6031/83/0000-0000/$03.00 0 1983 Elsevier Scientific Publishing Company 



T
A

B
L

E
 

1 

V
al

ue
s 

of
 

f(
a)

, 
g(

a)
 

an
d 

g’
(a

) 
fo

r 
di

ff
er

en
t 

so
lid

 
st

at
e 

re
ac

tio
n 

m
ec

ha
ni

sm
s 

R
ea

ct
io

n 
m

ec
ha

ni
sm

 
f(

a)
 

g(
a)

 
g’

(a
) 

1.
 

2 3.
 

4.
 

5.
 

6.
 

Po
w

er
 

la
w

 
N

uc
le

at
io

n 
an

d 
nu

cl
ei

 
gr

ow
th

 
R

an
do

m
 

nu
cl

ea
tio

n 
(M

am
pe

l 
un

im
ol

ec
ul

ar
 

la
w

) 
A

vr
am

i-
E

ro
fe

ev
 

nu
cl

ei
 

gr
ow

th
 

Pr
ou

t-
T

om
pk

in
s 

br
an

ch
in

g 
nu

cl
ei

 
D

if
fu

si
on

 
co

nt
ro

lle
d 

Ja
nd

er
, 

3-
di

m
en

si
on

al
 

di
ff

us
io

n 
A

nt
i-

Ja
nd

er
, 

3-
di

m
en

si
on

al
 

co
un

te
r 

di
ff

us
io

n.
 

B
ro

un
sh

te
in

-G
in

st
lin

g,
 

3-
di

m
en

si
on

al
 

di
ff

us
io

n 
V

al
en

si
, 

2-
di

m
en

si
on

al
 

di
ff

us
io

n 
E

xp
on

en
tia

l 
Ph

as
e 

bo
un

da
ry

 
C

on
tr

ac
tin

g 
sp

he
re

 
C

on
tr

ac
tin

g 
cy

lin
de

r 
R

ea
ct

io
n 

or
de

r 

l/r
 

a’
-’

 

a)
 

l/r
(l

-a
)[

-l
n(

l-
a)

]‘
-’

 
a(

l-
a)

 

(,
- 

a)
-‘/

3[
’ 

-(
‘- 

a)
-‘/

3]
-’ 

(l
+

 
a)

“X
[l

_(
l+

 
a)

-“
31

-l
 

[(
 1

 - 
a)

- 
“3

 
- 

[-
ln

(l
- 

a)
]-

“‘
-’

 
l/r

 
a 

(1
 -

 
a)

2’
3 

(1
 -

 
a

)‘
/2

 

+
( 

1 
- 

a)
‘-

r 

ar
 

-l
n(

l-
a)

 
[-

ln
(l

-a
)]

’ 

]n
]o

/(
l-

 
aI

1 

?[
I-

(1
 

- 
a)

“3
12

 

$[
( 

1 
+

 a
)“

3 
- 

II
2 

$[
l-

fa
-(

l-
a)

2’
3]

 
(1

- 
a)

 
In

(l
- 

a)
+

 
a 

in
 a

r 

3[
1 

-(
I 

- 
a

)‘
/3

] 

2[
1-

(l
- 

a
)‘

/2
] 

1-
(1

-a
)’

 

rl
n 

a,
 

(r
=

f,
 

f, 
f, 

1,
 4

 o
r 

2)
 

ln
[ 

- 
ln

( 
1 

- 
a)

] 
rl

n[
-I

n(
l-

a)
],

(r
=

$,
 

f,
fo

r+
) 

In
 l

n[
 a

/(
 

I-
 

a
)]

 

2 
In

[l
 

-(
I 

- 
a)

‘j
3]

 

2 
ln

[(
 1

 +
 a

)‘
13

 
- 

I]
 

In
[l

-$
a-

(l
-a

)2
’3

] 

ln
[(

 1
 - 

a
) 

ln
( 

1 
- 

a)
+

 
a]

 
r 

In
 I

n 
a,

 
(r

 =
 1

 o
r 

2)
 

In
[l

 -
(I

 
- 

a)
‘j

3]
 

ln
[l

-(
l-

 
a)

“‘
] 

ln
[l

-(
l-

a)
r]

(r
=

2,
3,

0r
4)

 



363 

literature. Amongst these are (a) generation of theoretical thermoanalytical 
curves for different functional forms of (Y and their comparison with experi- 
mental curves [2-41, (b) comparison of isothermally and non-isothermally 
determined functional curves [5,6], and (c) comparison of differential and 
integral methods, selecting the matching parameters [7,8], and determining 
the functional form of (Y, i.e. f( CX). 

The determination of theoretical thermoanalytical curves for all possible 
functional forms of (Y, f(a), and their comparison with experimental curves is 
a very elaborate exercise. On several occasions, the determination of the 
isothermal curve is not possible because of the limitations of the experimen- 
tal set-up and also the time involved. Similarly, determining kinetic parame- 
ters by differential as well as integral methods does not mean different 
results, since these originate from the same basic equations [eqn. (1) or (2)]. 

It is, however, possible to remodel eqn. (4) by substituting eqn. (2) and 

rearranging it to give 

(5) 

On neglecting the comparatively small term 2 R2T3/E *, eqn. (5) reduces 
to 

(6) 

A linearity of plot of f(a), g( ) (Y vs. T* da/dT or any other combination 

TABLE 2 

Values of fraction conversion, (Y, with respect to reciprocal temperature, l/T for CdCO, 
decomposition 

a l/T x 103 

0 1.538 
0.0046 1.508 
0.0172 1.484 

0.0406 1.458 
0.0788 1.431 
0.1352 1.401 
0.2200 1.381 
0.3405 1.359 
0.5025 1.337 
0.6993 1.314 
0.9015 1.292 
0.9883 1.285 
1 .oooo 1.274 
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can decide the mechanism determining the functional form of (Y. 
Alternatively, on integration of eqn. (6), we have 

g’(a) = - 6 
where g’(a) = /f(a) g(a) da. 

The plot of g’(a) vs. l/T is linear with the proper functional form of (Y. 
The slope of this plot, if multiplied by R, gives the value of E. Application 
of this new method clearly gives a means of obtaining the valid reaction 
mechanism. 
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Fig. 1. Coats and Redfern [lo] plot for CdCO, decomposition. 0, g( LY) = [ 1 - (1 - a)“3]; A, 
g(cx)=[1-(1-_(y)‘/2];0,g(~)=[l-ln(l-a)]. 
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Different g’( c~) values, along with f(a) and g’(a) values, applicable for 
various reaction mechanisms of a solid state reaction, are given in Table 1 
for convenience. 

The applicability of this new method is illustrated by studying the thermal 
decomposition of CdCO,. The different values of fractional conversion, (Y, 
with respect to reciprocal of temperature, l/T, required for this reaction to 
show the linearity limits of different plots in ensuing figures, are given in 
Table 2. 

The decomposition of CdCO, to Cd0 and CO, has an order of 0.5 [9] and 
has a phase boundary controlled contracting cylinder mechanism reaction. 
When the logarithmic version of the Coats and Redfern method [lo]. i.e. 
ln[g(a)/T2], is plotted with respect to l/T for a 0.5 order or phase 
boundary controlled cylindrical mechanism, a 0.67 order or phase boundary 
controlled spherical mechanism, a first order or nucleation and growth 
random nucleation mechanism (Mampel unimolecular law), all plots become 
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Fig. 2. Plot according to eqn. (6) for CdCO, decomposition. 0, f(aO=(l- a)2’33 g(a)= 311 
-(l-a)“‘3]; A, f(cy)=(l-u)“2, g(a)=2[1-(l-Cy)‘/2]; 0, f(cy)=(l--(Y), g(a)=[-ln(l 
- ax. 
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Fig. 3. Plot according to eqn. (7) for CdCO, decomposition. 0, g’(a) = - ln[ 1 - (1 - u)“~]; 
A,g’(a)= -ln[l-(l-a)‘/2];0,g’((r)= -ln[-In(l-a)]. 

linear ((Y = 0.05-0.75). It becomes very difficult to distinguish which particu- 
lar mechanism is valid (Fig. 1) but when our new method is followed, one 
can pinpoint the difference between different reaction mechanisms [Fig. 2, 
eqn. (6) and Fig. 3, eqn. (7)]. Here the plot is linear for 0.5 order or phase 
boundary controlled cylindrical mechanism only. 

It is pointed out that it is a very simple approach to use either eqn. (6) or 
(7) for the determination of the proper reaction mechanism for all possible 
functional forms of (Y, i.e. f(a) g(a) in the case of eqn. (6) and g’(a) in the 
case of eqn. (7) and check the linearity of the plots for non-isothermally 
determined solid state reaction. 
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